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SUMMARY 
Two dimensional sloshing analysis has been carried out by the Lagrangian finite element method. For the 
integration in time, the velocity correction method with the same interpolation functions for velocity and 
pressure is successfully used. The Lagrangian treatment to pursue the free surface position is presented. The 
comparison with the experiments shows extremely good agreement. It is shown that the large amplitude 
sloshing waves in a container can be. analyzed by the present method. 
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1. INTRODUCTION 

Sloshing is the liquid motion of a free surface in a container subjected to forced oscillation. In 
engineering problems, analyses of sloshing are very important, e.g. liquid oscillations of large 
storage tanks caused by earthquakes, liquid motions of containers of tankers caused by swaying 
and rolling motions during sailing, and motions of liquid fuel in tanks of aircraft and spacecraft. 

A number of studies have been presented on sloshing analyses, but most of them are based on 
linear theory’-4, i.e. sloshing wave heights are assumed to be small and a linearized free surface 
boundary condition is assumed. When the amplitude of the forced oscillation is small, linear 
theory is valuable and has proved successful in the design of tanks and containers. When the 
amplitude of the forced oscillation is large or the excitation of the forced oscillation is near the 
natural frequency of the liquid, a large sloshing wave occurs. Various s t ~ d i e s ~ - ~ ~  have been 
presented on sloshing motions of finite amplitude, but the shapes of the containers have been 
limited to simple ones, i.e. rectangular or circular and without roofs or chamfers. 

This paper presents the two-dimensional analysis of large-amplitude sloshing waves in contain- 
ers which have roofs or chamfers by the Lagrangian finite element method. Using the Lagrangian 
description, the liquid always agrees with the region to be analysed. This is of great advantage in 
solving the free surface problem and one can easily treat complex shapes of containers. 

For the analytical procedure the velocity correction method has been applied. This method has 
been investigated by many authors, including Ramaswamy et al.,” Ramaswamy and 
Kawahara,I3* l4 Kawahara and Anjyu” and Okamato et ~ 1 . ’ ~  In this paper a treatment of the 
free surface flow on a multi-sloped wall boundary is advanced. 
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The numerical results computed are compared with the experimental results in order to 
investigate the validity of the present method. Another two sloshing analyses are presented of 
liquids in complex containers with roofs or chamfers. 

2. BASIC EQUATIONS 

The equation of motion and the equation of continuity in Lagrangian form are given by 

DUi/Dt = - P, i /p  + u( ui, j + uj, i ) ,  j +A, 
ui,i = 0, 

where U i  a n d i  are the velocity and acceleration respectively in the xi-direction ( i  = 1,2), p is the 
pressure, p is the density and u is the coefficient of kinematic viscosity. DUi/Dt represents the 
material derivative of the velocity. 

The following two kinds of boundary conditions are used in this analysis. One is assumed to be 
the boundary on the rigid wall (on S,) and the other is the boundary on the free surface (on S2): 

A A 

Ui = Ui, Q = p,ini = Q on S1, 

p = 0, & = U ( U , , ~ +  Uj , i )n j  = & on S, ,  
A 

(3) 

(4) 

where f i i ,  Q, 0 and 
surface boundary condition. 

are given values on the boundaries and equation (4) is an approximate free 

3. VELOCITY CORRECTION METHOD 

In the Lagrangian description the material acceleration is approximated as follows: 

DUi/Dt N ( U : + l -  U:)/At, 

uy = Ui(t", XY), 

Ur+' = Ui(t,+At,x;+'), 

x:+' =xY+At(U:+'+ U:)/2,  

where At is the time increment, XY and xY+' are the positions of the fluid particle at times t" and 
t" + At respectively and V: and U:+' are the particle velocities at steps n and n+ 1 respectively. 

The velocity correction method based on the Lagrangian f~rmulation'~ is applied in this paper. 
The following calculation procedure can be derived. 

1. Calculate the intermediate velocity fi:+' by 

fi:+l = U;+At[u(Ugj+ V;i),i+J;"]. (9) 

p:;' = (l/At)C[:'. (10) 

u:+' = fi:+l-Atp:?'. (1 1) 

2. Solve the Poisson equation for pn+' by 

3. Correct 6:" by 

Steps 1-3 are repeated until the preassigned total time is reached. 
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4. FINITE ELEMENT FORMULATION 

The equations of motion and continuity are multiplied by the weighting functions U: and p* 
respectively and integrated over the domain V. Integrating by parts in equations (9) and (10) and 
using the divergence theorem, the weighted residual equations corresponding to equations 
(9Hll) are derived as follows: 

r r \ 

n " 

P P P 

(UtU:")dV= (U:fi:")dV-A.t (UJp;:')dV. 
JV J V  JV 

The natural boundary conditions of equations (12) and (13) correspond to equations (4) and (3) 
respectively. 

Velocity U i ,  pressure p and the corresponding weighting functions U? and p* are interpolated 
in each finite element as follows: 

ui = quai ,  u: = oau,+i, (15) 

P = QaPa7 P* = @aP,*, (16) 

where the @a denote the interpolation functions for velocity and pressure. Uai and p a  are the 
velocity and pressure at the ccth node of each finite element. U,*i and p,* are the nodal values of the 
weighting functions. Standard linear interpolation functions based on the three-node triangular 
finite element are used. 

Substituting equations (15) and (16) in equations (12H14), the following finite element 
equations are derived 

- 
M:: ' U;+ ' = M$ U;i - At(S:ipj U;j - N,"f :  - Qi), (17) 

A:i&lp;+' = -(l/At)H~;'fi;:'+~:'', (18) 

1 u;+ 1 = fi;+ - AtH:; pi' ' ,  (19) 

where 



456 T. OKAMOTO AND M. KAWAHARA 

n 

fiui = [ @ u ~ ( U i , j +  Uj,,)nj]dS= (@,fi)dS, Js b 
I- I- 

T, = (@,p,ini)dS = (0,Q)dS. Js Js 
I\?us in equations (17) and (19) is the lumped coefficient derived from Mup.  

The calculation procedure for this method is as follows. 

1. Assign U/+l("') = U;l. 
2. Calculate the new position of the nodal point by 

x/+'("') = xf+At (U/+ ' (" '+  u/)/2. 
3. Calculate 6/+lcrn+l) by equation (17) using the known U/. 
4. Solve the Poisson equation (18) for p"+l("'+')  using 6; + 1 (m + 1) 

5. Calculate U;+l('"+l) by equation (19), correcting 6/+l("'+l) by P n+l("'+l). 

6. Examine whether U / + l ( " ' + l )  converges sufficiently or not, and if not replace U;+l("') b Y 
U/'+'("+') and recalculate from step 2. 

In this procedure, (m) means mth approximation. 

7. Continue to calculate until the preassigned final time. 

5. SLOSHING WAVE ON A SLOPED WALL 

In order to calculate large-amplitude sloshing waves in containers which have roofs or chamfers, 
it is necessary to consider the treatment of a sloped or multi-sloped wall boundary (Figure 1). The 
treatment of this boundary as follows. 

1. Judge which sloping wall the boundary nodal point lies on. 
2. Calculate the components of the unit normal of the boundary wall surface. 
3. Compute the tangential velocity U ,  of the boundary nodal point and use this U, to calculate 

4. Set U,, the component of velocity normal to the wall, to zero. 
the new position of the nodal point of calculation procedure step 2 of Section 4. 

\ Wall2 

Figure 1. Treatment of a sloped or multi-sloped wall boundary 
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In this paper an explicit type of numerical integration in time is used. In the scheme, U, and U, are 
corrected at each time step. 

As shown in Figure 2, when there are nodal points across a corner of a multi-sloped wall 
boundary, a 'cave' occurs between the wall and the finite element. In the calculation we assume 
that the cave is so small that it can be neglected. 

6. FORCED OSCILLATION OF CONTAINERS 

There are two methods of imposing forced oscillation of containers. In the first case the velocity of 
the wall is imposed as the boundary condition and in the second case the acceleration effect of the 
container is taken into account as t h e i  in equation (1). For example, consider a container 
subjected to a sinusoidal horizontal oscillation D = A  sin (ot) as shown in Figure 3, where A is the 
amplitude of the displacement and o is the angular velocity. In the first case the velocity of the 

Figure 2. Nodal points across a comer of a multi-sloped wall boundary 

Figure 3. Forced oscillation 
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wall U ,  = Awcos(wt) is applied on the boundaries a-d and k. In the second case the 
acceleration a = -Am2 sin(wt) is applied as the accelerationf,. 

7. COMPARISON WITH EXPERIMENTAL RESULTS FOR A RECTANGULAR TANK 

To investigate the validity of the present method, a comparison was made with experimental 
results. A transparent acrylic resin tank 100 cm in width, 120 cm in height and 10 cm in breadth, 
as shown in Figure 4, was used in the experiment. Water was used as the liquid and the depth was 
50 cm. The tank was set on a shaking table which could be oscillated sinusoidally starting from 

Figure 4. Experimental rectangular model tank set on a shaking table 

s, : u2=or Q=O 

Figure 5. Finite element model 
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zero velocity. The frequency and amplitude of displacement of the table were measured by a 
displacement gauge. Sloshing phenomena were recorded by a video camera. 

The finite element model is shown in Figure 5. The analytical region is divided into 
24 x20 meshes. The density is loo0 kgm-3 and the coefficient of kinematic viscosity is 
u =  1.0 x lop6 m2 s - l .  The accelerationf, is -9-8 ms-*. The amplitude and period of displace- 
ment of the table are 0-93 cm and 1.183 s respectively. The period is nearly equal to the first 
characteristic period calculated by linear potential theory. The time increment At is 1.0 x s. 
The boundary conditions are shown in Figure 5. 

Figures 6(a)-6(c) show both the experimental and calculated results. In these figures the left 
column shows the experimental result while the right three columns show the calculated results of 
the free surface, the finite element configuration and the pressure distribution. The configurations 
of the free surface agree well between experimental and calculated results. 

8. ANALYSIS O F  LIQUID IN A CONTAINER 

8.1. Analysis of liquid in a container inclined instantaneously 

As shown in Figure 7, the container is inclined instantaneously at  an angle of 25" and allowed 
to stand still after the inclination. The dimensions of the container are also shown in the figure. 
The liquid region is divided into 12 x 20 meshes as shown in Figure 8. 

In this example the behaviours of two liquids with different viscosities are analysed. The 
coefficients of kinematic viscosity are u = 1.0 x m2 s - l  respectively. The 
density is lo00 kgmV3 and the gravitational acceleration g=9.8 ms-2. The time increment At is 
1.0 x 

Figure 9(a)-9(d) show the calculated results. The surface wave is created and climbs up the left 
wall, is reflected and then travels towards the right wall. For the liquid with the lower viscosity the 
wave climbing up the left wall is higher and the travelling wave is more predominant. 

and 5-0 x 

s. The boundary conditions are shown in Figure 8. 

8.2. Analysis of liquid in a container oscillating sinusoidally 

The dimensions of the container are shown in Figure 10. The liquid region is divided into 
12 x 20 meshes. Figure 11 shows the finite element model. The density is lo00 kgm-3 and the 
coefficient of kinematic viscosity is u =  1.0 x m2 s- '. The accelerationf, is -9.8 m s- '. First 
the container is at rest and is then moved sinusoidally. The amplitude and period of displacement 
are 12-5 cm and 1-75 s respectively. The time increment At in this calculation is 1.0 x s. The 
boundary conditions are shown in Figure 11. 

The calculated results for the finite element configuration and the pressure distribution are 
shown in Figures 12(a)-12(h). The sloshing wave is seen to grow with time. At t=2.76 s the wave 
covers almost all of the left upper chamfer and the configuration of the free surface is a double- 
valued function of x l .  As the sloshing wave grows, the pressure distribution changes from a static 
pressure distribution. For example, at t = 1.80, as shown in Figure 12(f), the sloshing wave climbs 
up the right wall and the pressure contour lines become sparse in the right region and dense in the 
left region. At t=2-52, as shown in Figure 12(h), the sloshing wave passes the corner of the 
container and a high pressure occurs near the corner. 

At t = 2.76, as shown in Figure 12(h), the mesh configuration is distorted and the calculation 
cannot proceed any further. To overcome this problem and to obtain further calculation steps, 
finite element rezoning of the multi-sloped wall boundary is needed. 

The calculations were carried out using a FACOM VP-50 computer system. The CPU times 
for the calculation of Examples 8.1 and 8.2 were 25 and 40 min respectively. 
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Figure 7. Container of Example 8.1 

: Ut=O, 
Q=O 

463 

Figure 8. Finite element model 



464 T. OKAMOTO AND M. KAWAHARA 

Finite element configuration 

Pressure distribution 
( a )  u = 1.0~10-3m~/sec 

Finite element confiquration 

Pressure distribution 
(b) u = 5.0x10-3m2/sec 

Figure 9(a). Calculated results of Example 8.1 
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Finite element configuration 

Pressure distribution 
( a )  u = 1.0xi0-3m2/sec 

Finite element confisuration 

Pressure distribution 
( b )  u = 5.0x10-3m2/sec 

Figure 9(b). Calculated results of Example 8.1 
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F i n i t e  e l e m e n t  c o n f i g u r a t i o n  

I I 1 

t=l.Zs ec 

* s  
-8 .0 

t=l .4sec 
P r e s s u r e  d i s t r i b u t i o n  

( a )  u = 1 . 0 ~ 1 0 - ~ r n ~ / s e c  

4g& t = l  . 6 s e c  

F i n i t e  e l e m e n t  c o n f i g u r a t i o n  

t = l  . 2 s e c  v t = l . 4 s  ,ec 

1.0 

t = l  . 6 s e c  
P r e s s u r e  d i s t r i b u t i o n  

( b )  u = S . O ~ l O - ~ m ~ / s e c  

Figure 9(c). Calculated results of Example 8.1 
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Finite element confiquration 

Pressure distribution 
( a )  u = 1.0~10-3m'/sec 

Finite element configuration 

461 

Pressure distribution 
( b )  u = 5 . 0 ~ 1 O - ~ m ~ / s e c  

Figure 9(d). Calculated results of Example 8.1 
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Figure 10. Container of Example 8.2 

Ut=O, 
Q=O 

S1 : U2=0, Q=O 

Figure 11. Finite element model 
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t=O.OOsec t=O. 12sec t=O. 24sec 
(a) Finite element configuration 

0.0 

2.0 

t=O.OOsec t=0.12sec t=O. 24sec 
(b) Pressure distribution 

Figure 12(a). Calculated results of Example 8.2 
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t =O .36sec t=O. 48sec t =O. 60sec 
(a) Finite element configuration 

t=0.36sec t=0.48sec t=O. 60sec 
(b) Pressure distribution 

Figure 12(b). Calculated results of Example 8.2 
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t=O. 72sec t=0.84sec * t=0.96sec 
(a) Finite element configuration 

t =O .7 2sec t = O  .04sec 
( b )  Pressure distribution 

Figure 12(c). Calculated results of Example 8.2 

t=0.96sec 
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t=l . 2 0 s e c  t=l .32sec 
( a )  Finite element configuration - 

t=i .08sec t=l .20sec 
( b )  Pressure distribution 

kg+ 
100 

ttl.32sec 

Figure 12(d). Calculated results of Example 8.2 
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t=l.56sec t=l.68sec t=l .44sec 
( a )  Finite element configuration 

t =1 .4 4sec t=l .56sec t=l .68sec 
(b) Pressure distribution 

Figure 12(e). Calculated results of Example 8.2 
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t=l .bOsec t=l.92sec t=2.04sec 
( a )  Finite element configuration 

t=l . 8 0 s e c  t=l .92sec 
(b) Pressure distribution 

Figure 12(f). Calculated results of Example 8.2 

t=2.0 4sec 
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t=2.16sec t=2.28sec t=2.4Osec 
( a )  Finite element configuration 

10 0- 

t=2.16sec t=2.28sec 
( b )  Pressure di.stribution 

6 0  

,100 

t=2.40sec 

Figure 12(g). Calculated results of Example 8.2 
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t=2.52sec t=2.64sec t=2.76sec 
(a) Finite element configuration 

t=2.52sec t=2.64sec t-2.76sec 
(b) Pressure distribution 

Figure 12(h). Calculated results of Example 8.2 

9. CONCLUSIONS 

Using the Lagrangian finite element method, large-amplitude sloshing waves in a container of 
complicated shape with roofs or chamfers can be analysed. By comparison with experimental 
results, this method is shown to be sufficiently accurate to follow the free surface position and to 
obtain the velocity and pressure distributions. Furthermore, two examples are presented to 
validate the ability to calculate large-amplitude sloshing waves. In the last example the wave is so 
high that the configuration of the free surface is a double-valued function of the horizontal 
co-ordinate. 
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